library(tidymeta)iud_cxca
## # A tibble: 16 x 26## study_id study_name author es l95 u95 lnes lnl95 lnu95## <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 1 Roura, 2016 Roura 0.600 0.300 1.20 -0.511 -1.20 0.182 ## 2 2 Lassise, 1991 Lassi… 0.800 0.500 1.20 -0.223 -0.693 0.182 ## 3 3 Li, 2000 Li 0.890 0.730 1.08 -0.117 -0.315 0.0770## 4 4 Shields, 2004 Shiel… 0.500 0.300 0.820 -0.693 -1.20 -0.198 ## 5 5 Castellsague… Caste… 0.630 0.380 1.06 -0.462 -0.968 0.0583## 6 6 Castellsague… Caste… 0.450 0.300 0.670 -0.799 -1.20 -0.400 ## 7 7 Brinton, 1990 Brint… 0.690 0.500 0.900 -0.371 -0.693 -0.105 ## 8 8 Parazzini, 1… Paraz… 0.600 0.300 1.10 -0.511 -1.20 0.0953## 9 9 Williams, 19… Willi… 1.00 0.600 1.60 0. -0.511 0.470 ## 10 10 Hammouda, 20… Hammo… 0.300 0.100 0.500 -1.20 -2.30 -0.693 ## 11 11 Castellsague… Caste… 1.08 0.370 3.20 0.0770 -0.994 1.16 ## 12 12 Castellsague… Caste… 0.340 0.0500 2.56 -1.08 -3.00 0.940 ## 13 13 Castellsague… Caste… 0.870 0.340 2.23 -0.139 -1.08 0.802 ## 14 14 Castellsague… Caste… 0.490 0.190 1.23 -0.713 -1.66 0.207 ## 15 15 Castellsague… Caste… 0.240 0.0900 0.660 -1.43 -2.41 -0.416 ## 16 16 Celentano, 1… Celen… 0.500 0.170 1.47 -0.693 -1.77 0.385 ## # ... with 17 more variables: selnes <dbl>, group <fct>, case_num <dbl>,## # control_num <dbl>, start_recruit <dbl>, stop_recruit <dbl>,## # pub_year <dbl>, numpap <dbl>, ses <dbl>, gravidity <dbl>,## # lifetimepart <dbl>, coitarche <dbl>, hpvstatus <dbl>, smoking <dbl>,## # location <chr>, aair <dbl>, hpvrate <dbl>
iud_cxca
we'll usestudy_name
lnes
selnes
group
pub_year
iud_cxca
we'll usestudy_name
= Author + study yearlnes
selnes
group
pub_year
iud_cxca
we'll usestudy_name
lnes
= ln(Odds Ratio)selnes
group
pub_year
iud_cxca
we'll usestudy_name
lnes
selnes
= SE of ln(OR)group
pub_year
iud_cxca
we'll usestudy_name
lnes
selnes
group
= Study designpub_year
iud_cxca
we'll usestudy_name
lnes
selnes
group
pub_year
= Publication yearforest_plot()
funnel_plot()
influence_plot()
cumulative_plot()
library(ggplot2)p <- ggplot(iud_cxca, aes(case_num + control_num, lnes, color = group))p
library(ggplot2)p <- p + geom_point()p
p <- p + geom_smooth(method = "lm", se = FALSE)p
p + labs(title = "The Effect of Sample Size on Estimate", x = "Sample Size", y = "ln(Odds Ratio)") + scale_color_discrete(name = "Study Design") + theme_minimal() + theme(text = element_text(size = 16))
%>%
mutate()
arrange()
group_by()
tidy()
%>%
: passes the results of one function to the nextmutate()
arrange()
group_by()
tidy()
%>%
mutate()
: changes or creates a new variablearrange()
group_by()
tidy()
%>%
mutate()
arrange()
: sorts a data set by a variablegroup_by()
tidy()
%>%
mutate()
arrange()
group_by()
: groups a data set by a variabletidy()
%>%
mutate()
arrange()
group_by()
tidy()
: tidies statistical resultsmeta_analysis()
meta_analysis()
ma <- iud_cxca %>% group_by(group) %>% meta_analysis(yi = lnes, sei = selnes, slab = study_name, exponentiate = TRUE)ma
## # A tibble: 21 x 11## group study type estimate std.error statistic p.value conf.low## <fct> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 Nested … Roura, 2… study 0.600 0.354 -1.44 NA 0.300## 2 Nested … Subgroup… summ… 0.600 0.354 -1.44 0.149 0.300## 3 Populat… Lassise,… study 0.800 0.223 -0.999 NA 0.516## 4 Populat… Li, 2000 study 0.890 0.0999 -1.17 NA 0.732## 5 Populat… Shields,… study 0.500 0.257 -2.70 NA 0.302## 6 Populat… Castells… study 0.630 0.262 -1.77 NA 0.377## 7 Populat… Castells… study 0.450 0.205 -3.90 NA 0.301## 8 Populat… Subgroup… summ… 0.655 0.146 -2.90 0.00374 0.492## 9 Clinic-… Brinton,… study 0.690 0.150 -2.47 NA 0.514## 10 Clinic-… Parazzin… study 0.600 0.331 -1.54 NA 0.313## # ... with 11 more rows, and 3 more variables: conf.high <dbl>,## # meta <list>, weight <dbl>
forest_plot()
forest_plot()
ma %>% forest_plot(group = group)
forest_plot()
ma %>% forest_plot(group = group)
text_table()
forest_plot()
ma %>% forest_plot(group = group)
text_table()
ma %>% text_table(group = group, "Weights" = weight)
library(patchwork)forest_plot() + text_table()
funnel_plot()
funnel_plot()
ma %>% funnel_plot(log_summary = TRUE)
sensitivity()
sensitivity()
ma %>% sensitivity(exponentiate = TRUE)
sensitivity()
ma %>% sensitivity(exponentiate = TRUE)
influence_plot()
sensitivity()
ma %>% sensitivity(exponentiate = TRUE)
influence_plot()
ma %>% sensitivity(exponentiate = TRUE) %>% influence_plot()
cumulative()
cumulative()
ma %>% arrange(desc(weight)) %>% cumulative(exponentiate = TRUE)
cumulative()
ma %>% arrange(desc(weight)) %>% cumulative(exponentiate = TRUE)
cumulative_plot()
cumulative()
ma %>% arrange(desc(weight)) %>% cumulative(exponentiate = TRUE)
cumulative_plot()
ma %>% arrange(desc(weight)) %>% cumulative(exponentiate = TRUE) %>% cumulative_plot(sum_lines = FALSE)
read_dta()
read_dta()
library(haven)data <- read_dta("stata_data.dta")
read_dta()
library(haven)data <- read_dta("stata_data.dta")
ggsave()
read_dta()
library(haven)data <- read_dta("stata_data.dta")
ggsave()
library(ggplot2)p <- forest_plot(ma, group = group)ggsave(p, "forest_plot.png", dpi = 320, height = 8)
meta_analysis()/your_favorite_function() + tidy()
meta_analysis()/your_favorite_function() + tidy()
forest_plot()/text_table()
meta_analysis()/your_favorite_function() + tidy()
forest_plot()/text_table()
sensitivity()/influence_plot()
meta_analysis()/your_favorite_function() + tidy()
forest_plot()/text_table()
sensitivity()/influence_plot()
cumulative()/cumulative_plot()
Slides created via the R package xaringan.
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |